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1. Introduction

Consider the linear model given by

(1.1) Y = T. + ac i for i = 1,...,N

T. = X. .1 1

Here {ci} are independently and identically distributed with symmetric

distribution F, {xi ) are (lxp) design constants, 3 (pxl) is the

regression vector, and (a.} expresses the possible heteroscedasticity in

the model. Anscombe (1961) and Bickel (1978) have considered tests for

the hypothesis of homoscedasticity, i.e.,

(1.2) H0 : = a2 . N

In the case that (1.2) is accepted, we are in a standard linear

model for which a vast theory applies. Huber (1977) and others have

argued (for this homscedastic case) that least squares methods should

not be used blindly because the resulting estimates are sensitive to

outliers and departures from the assumption of normal errors. Huber

(1973) and many others, for example Krasker (1978), have proposed robust

regression estimates. Huber (1973) and Yohai and Ibronna (1979) study

the asymptotic properties of these methods as N - - and p -

simultaneously. 'hey argue that such "many parameter" asymptotics are

important, both because they often occur in practice and because they

show how large a sanqle size is needed for a given model. In effect,

their work formalizes the rule of thumb: "one should take about 10

observations for every parameter."

In contrast to the homoscedastic case, there has not been much work

on estimating 8 in the heteroscedastic case that (1.2) is rejected, and

.1



3

to our knowledge there has been no work at all on the important problem

of N - - and p - simultaneously. Fuller and Rao (1978) consider the

case where the Y. occur in groups for which a. is constant, while Box

and Hill (1974) and Jobson and Fuller (1980) assume that

(1.3) ai = [f(Ti,o0)11

All three papers consider only Gaussian errors. Box and Hill suggest

generalized weighted least squares (WLS) wherein the weights (1.3) are

estimated and WLS applied. Jobson and Fuller consider maximum likelihood

techniques which are particularly sensitive to non-normal errors as well

as small misspecifications in (1.3).

For the case p fixed and N w, Ruppert and Carroll (1979)

developed a class of regression estimates for the heteroscedastic linear

model, which are both robutst and do not depend on the normal error

assumption. Their estimates are a natural generalization of Huber's

Proposal 2 (1977) and are defined as follows. First, assume

(1.4) f(T,O) = exp(Oh(*r)), (lxr) .

This class includes the important special cases

(1.5) f(T,0) = I(1+1 2) / 2 or a exp (a') or aI Ta

Let ,p he an odd function and X be an even function (X(- ,))<0, (+)>0).
A A

1Let 8p be a preliminary estimate of 0 and define 0 as any solution to

N

(1.6) l (O) = X((Yi-ti)f(ti,e))h(t i ) - 0 ,

A
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A Awhere t i = -- 3 × . If an exact solution to (1.6) does not exist, define 8
Ato minimize IiN(0)1. Finally, define B as the solution to

-1 Nr A
(1.7) N ). pYi-xi a)f(ti,))xi f(ti,0) 0

i=l

Wc make the conventions

00 = (-log 00 020.. 0r0)

(1.8)
h() = (1 h2 (T)... h r())

with the parameter a 0 chosen so that

(1.9) tX((Y-M-i)f(,00)) = hX() = 0

"lie conventions (1.8)-(1.9) ensure consistency of the solutions. In the

case of homoscedasticity, the solution to (1.6)-(1.7) is trivially

Atluber's Proposal 2 if the preliminary estimate 8p is also. Ruppert and

Carroll (1979) show that, in general, the solution to (1.6) and (1.7) is

asymptotically equivalent to the "optimal" robustified WLS obtainable

when the o i } are actually known, i.e.,

,N (0 1 S FiPC )/1.41 (El)) 2

(1.10) S = li N- 1  N x'.x f 2 ( T i t lim SNN i=I 1 1-

N p(O,V) = p-variate normal, mean 0, covariance V

Wtnte-Glro results show tlat the asymptotics are surprisingly accurate

for small samples.



The purpose of this paper is to generalize the results of Ruppert

and Carroll to the casc N- , p-, under conditions similar to those

needed by Bickel (1978) and Yohai and Maronna (1979). In the next

section we consider the estimates of 8 when an appropriate estimate of 0

.. ; available, and in Section 3 we consider the estimation of 8.

2. The Limit Distribution of the Regression Estimate
A

Assuming that 0 is of the correct order ((AO) below) and h(-) is

sufficiently smooth ((A3) below), one can follow the steps of Yohai and

Maronna (1979). We first establish the order of 0.

Theorem 1. Under (A)-(£11) below,

N - 8 pN = 0p(l)

The main result is as follows.

Theorem 2. A,'ume (Al) - (A12) below. Let VN be any symmetric square

root of SN ((1.10) and (All)) and let {aN) be a sequence of (pNxl)

vectors with IaN [ = 1. 7hen

Nal 'N( - N(0, E 2Cl)/(E¢'(112

Here are the assumptions.

-lN

(Al) N 7 x x. T.
.= I 

(A2) Iil i M*<-

K!',
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(A3) The function h(x) and its first two derivatives are continuous and
bounded on the set x M + c for some E > 0. Further, M <

f(x,0) s M on this set uniformly for 10 - 00 < : .

(M) lim(P32/ N) max Ix 2 = 0.
N- N l!i':N

(AS) p is non-decreasing and bounded.

(A6) ' is Lipschitz and constant outside an interval.

(A7) If D(u,z) = (p(u+z) - ,,(u))/z, then there exists b, c, and d such

that P(1c 1 1<cM1
2) > 0 and D(u,z) a d if lul-c , fzf~b.

(A8) , ,and its first three derivatives are continuous and bounded.

(A9)) N11) I/p 0)M{a)N p -12/N= 0p{1).

(AlO) Nb - oj /pN = _p(1).

(All) 0 < lir if Xm in (SN N 1ir sup Xmax(SN) < C, where Xmin(-) and

Smax(.) are the minimum and maximum eigenvalues respectively.

(Al2) TNp  0 where TN (1p -P)' W0-0)
pd

o~ N1 0 , , d _

Remarks on Assumptions: Assumption (A) is a reparameterization device

used by Iuhber (1973) and Bickel (1978). Assumption (A2), which is also

used by Bickel, can be deleted if one strengthens (A3) by making M

a set of circumstances holding for the homoscedastic case. Assumption

W_
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(A3) is stronger than Iequired but is quite convenient and is tric for

the first two special cases in (1.5). Assumptions (A4)-(A8) are as in

Yohai and Maronna (1979) except for the second part of (A6), which holds

for those i commonly used and which can be relaxed at the cost of some

technical complications. Part (A8), in particular, can be relaxed if

pN/2 in (A4) is strengthened to pN; the proof becomes quite messy. Part

(A9) holds, for exanple, in cases of homoscedasticity or, in general, for

least squares if FE:2 < -, and (AlO) will be verified in the next section.

Part (All), in effect, formalizes (1.8) and follows frum (Al) in the

important special case of homoscedasticity.

kssumption (A12) is somewhat awkward looking and is the only

obstacle to our Theorem 2 being a real generalization of previous work.

lowever, (A12) holds in important special cases, including

homoscdasticity, as the following shows.

Propositi.on 1. A-!wumption (A12) holds if any of the foZlowing obtain:

(2.1) The variance, are homoscedastic.

(2.2) (p2/N)maxlxi l2 0.

2 A

(2.3) p is the least aquarec estimate, and

lini stip aX(N"1 XN x X fr(-i'0)) < '

Proof of Thcorem 1. Tlhe proof parallels that of Theorem 2.2 of Yohai and

Maronna. Let Y. tq = z = Ci/f(T,00) and define

N A A

UN(yL) J q'((z. "Ld"y)f(tiO))diyf(t.,O)

d i - x i N

i..
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Since p is monotone,

A , 2/N

'{NI- - > L2 . : P{sup U(y , LpN) > 0, y 1 1}

Now

U(y , Ip) = AN1Y - AN2 (Y)

where

AN1 '2 = P q)(zi f,(ti' O))dixf(ti)

N A A '- 2  2 A
AN2 (y) = L Y D(z. f(ti,0) , -Ld. yf(ti o)p ) (d y) f (ti,

i=l

From (A3) and (A4) it follows that

supi yf(ti,t)PN1: IAI = 1, 1 -5 i :5 N) -) 0
1i ON

From (A) we find that

N 2 (1 . _5c 2)
AN2(Y) 2 (IA/M1) (dy))

_ (W/N)P(IEJI:cm12) + a (),

the last step following from Y-M and (A7). We thus need only prove

AN y = 0p (1). Rewrite AN1 y as

ANI Y = BNy + (AN ^m-QY

N

N - (NPN) 7 i(zi)x i f(rTi,0 0 )

S4r-

4 .. . . .. * _ -- _ - - . .,
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By (AS) anid (All), =IN 0(1) so that

sup I B NyI: 1YI = 1} = 0p (1)

By (A2), (A3), (A6) and (AM), for some M 2 > 0,

NA
I(Nl-N)YI !5 M2 (NPN) ' 1 1iY10ItjgTijI + 1e-el1)

By (Al), (AO) and (MlO), this is 0 p(1) uniformly for 1-vI= 1, completing

the proof. 0

Proof of '11'eorem 2. 'Ihe proof is similar to that of Theorem 3.2 of Yohai

and Maronna. By a Taylor expansion,

0) = )f(i a xi qj

A IA I
W I w2 -w.(8- ) + ~-~3'W 4 (a-a) 6-"

where

A
qi fftim0) r.i f(-ie0

1 1 ie0
N1q00 'j N(A.)'-

N'j = NN (ziq i)q2 - (E I) r )a V~x! x.

Iw~I = 0 1 IN Z aVN'X!(Xi(A-a))3 P
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,,ctQ that from (A2), (A3), and (AO),

(2.4) lqi - ril = O(Iti-Til + e-el) = O(Iti-Ti! + (PN/N) .2

Then (2.4), (A8), and Theorem 1 show that

(2.5) (-)' W4(-) = N 2(Ci)r (xi- 2 vx + RNI

(2.6) IRN11 = O(1)N1 LIFN(xi( _ ))2 qi- ri IaNV lx: I p 0.

Thus, as in (3.S) and (3.6) of Yohai and Maronna, we obtain

(2.7) w) -i) + o) ,

A

(2.8) ( R+ O(E) + 0 (1)N2 , -

R N2 =N' 11 0(z iqi) q i (- (i )r iaV xi i-)

By Taylor expasions of ' and f, we obtain

A

w. (a-B) = (2Eip'+ EF- * ' ' ( e l ) ) T N +o O(1),
N p

where T N is given in (A12). Because of (A12), we see that the proof is

completed by showing

(2.9) w N- ,N P(F)r i aqVN lx  + 0p(1)

By using the synmetry of F, the fact that 'p is odd, and as in (3.5) and

(3.6) of Yohai and Maronna, (2.9) follows. I

Proof of Proposition 1. Under (2.1),

. '
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T f(T,e 0 ) 0

verifying tAIZ). A similar easy proof follows from (2.2). When (2.3)

holds,

IT ,NI 2 =0p ((PN /N)) DN ,

DN = NaVNlx.) 2  B)) 2

D N 1aV - N m l)x i ,N ,.-I

aDN xi N max x ( '21 )2 = n0(maxlxi
12)

completing the proof by (A4). Q

3. The Order of 0

From Theorems 1 and 2, we see that we must exhibit a sequence of
A

estimates 0 satisfying assumption (A10). We will show that any solution

to (1.6) will work under the following assumptions.

(Bl) The even function X satisfies the same assumptions as does 'p.

(B2) The statistic

( e O N-1 1= ,.1N 0 h(T i ) (ti'Ti )  0 0p(PN /N)2)•

(B3) 0 < X = lim inf Amin(QN) : lira sup Xmax(QN) <

QN = (EelX' (FI))N -1 yN h(tr)T h(ri).

A
We note that, when r is fixed, (B2) holds when 8 is the least

p
squares estimate, while Hluber's (1973) proof can be used for classical

i&
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M-estimates if (2.2) holds. Also, (B2) follows from assumption (A) if

there is homoscedasticity; for in this case,

e0 = (log o 0...0)

h(CO)= (1 h2 (T)...h r())

- N

GN = (log a)N (t -i=

Theorem 3. Assume (Al)-(Ag), (All)-(A12), and (B1)-(B3). Then (AIO)

holds.

We need the following lemma.

Lema l. Let {vi } be i.i.d. mean-zero bounded random variables; let

s{si } be uniformZy bounded constants. Then
N

(3.1) A N N visi(ti-Ti ) = 0 (pN/N)•
i--11

Proof. From (A),

A2  IN- 1 1 Vsx2 0p (PN/N) = DNp(PN/N)

EDN = O(1)PN/N .

Proof of Theorem 3. Define HN() as in (1.6) and note that by (Al),

(A4), and (A9),

raxIt i - "ri: 1 :5 i ! N} p 0

(3.2)
1N2

IN ( - * O(PN/N)
i= 1

.....d .... . .. .. I .. _.!. ... I ' I "'V : " u . . . ' . .. . . . ... . . . .. .. . . . : . . .
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From (A4), (Bi) and Lema 1, we thus obtain

N
(3.3) HN(O 0 ) - N I  X (Eh (ri + GNEc 1X'(cl) + 0(pN/N)

i=l

= 0p ((pN/N) )

from (B]), (B2) and the fact that EX(CEl) = 0. By (A4), (B1)-(B3), (3.2)

and a Taylor expansion, we find that for any M2 > 0,

(3.4) sup{ IHN(0 HN - N : IAI < M2PN } P 0

Now fix c > 0, L > 0. Choose y,N0 ,D0 such that N z No implies

P{NIGNI > D0p p < c/3

P{N' I ( i)h(Ti)l z y} < E/3.

Define M2 by

L -AM 2 /2 - Yp - Do

Choose N1 k N0 so that N k N1 implies

"min (QN) k 1./2

and

P{left side of (3.4) z y/2} < c/3

Then with probability at least 1-e, N a N1 and IAI M2pi imply
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(3.5) (N/pN) 0INA M2N LPN

Also note that AHN(Oo+sAN- ) is increasing as a ftmction of s; so that

if [A I 2N, then as in Jureckov4's (1977) proof, using (3.5),

(3.6) (N/PNj 0N'VAl IAI.

From (3.6), we have with probability at least 1-c,

inf{pN lN(8)l: N1E - 0 M

inf{[AHN(o+ANfh)l/IA[ph: [Al > M ph1

L.

Since L is arbitrary, the proof is complete. 0

Remark: Throughout we have taken r fixed; r is the dimension of 60 and

h(T). This seems a perfectly reasonable assumption, as one is unlikely

to construct a complicated function for cl, and in fact, r s 3 will

suffice for most applications. However, the proofs can be forced through

when r = rN = O(PN). One must assume that the bounds in (A3) are

uniform in the components of h(.), and the only stumbling block is the
A 2assumption (B2). When 1p is the least squares estimate and E 2 < 1 , it

turns out that (B2) holds whenever

h I N
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